

PG - 818

Il Semester M.Sc. Degree Examination, June 2015 (RNS) (2011-12 and Onwards) **MATHEMATICS**

M-203: Functional Analysis

Time: 3 Hours Max. Marks: 80

Instructions: 1) Answer any five questions.

2) Choosing atleast **two** from **each** Part.

PART - A

- 1. a) Define Banach space. Show that l_p^n is a Banach space under the norm $\|\mathbf{x}\|^p = \left[\sum_{i=1}^n |\mathbf{x}_i|^p\right]^{\frac{1}{p}} \text{ where p is the real number such that } 1$

is the space of all n-tuples $x = (x_1, x_2, ..., x_n)$ of scalars.

b) Let M be a closed linear subspace of a normed linear space N. Show that the quotient space $\frac{N}{M}$ is also normed linear space. Further if N is a Banach

space then prove that $\frac{N}{M}$ is a Banach space.

- 2. a) Show that every closed subspace of a Banach space is Banach space. 6
 - b) If N and N are normed linear spaces and T: N \rightarrow N, then show that the following are equivalent

i)
$$\| T \| = \sup \left\{ \frac{\| T(x) \|}{\| x \|} : x \in \mathbb{N}, x \neq 0 \right\}$$

ii)
$$\| T \| = \sup \{ \| T(x) \| : x \in \mathbb{N}, \| x \| \le 1 \}$$

iii)
$$\| T \| = \sup \{ \| T(x) \| : x \in \mathbb{N}, \| x \| = 1 \}.$$

10

6

10

10

7

5

4

5

3. a) Let M be a linear subspace of a normed linear space N and let f be a continuous linear functional defined on M. If x_0 is a vector not in M and if $M_0 = M + [x_0]$ denotes the linear subspace spanned by M and x_0 , then prove that f can be extended to a continuous linear functional f_0 defined on M_0 such that $\|f_0\| = \|f\|$.

b) If N is a normed linear space and x_0 is a nonzero vector in N, then prove that there exists a functional f_0 in N* such that $f_0(x_0) = \|x_0\|$ and $\|f_0\| = 1$.

4. a) Let B be a Banach space and N be a normed linear space. If $\{T_i\}_{i \in I}$ is a nonempty set of continuous linear transformations of B into N with the property that $\{T_i(x)\}_{i \in I}$ is a bounded subset of N for each x in B, then prove that $\{T_i\}_{i \in I}$ is a bounded subset of B(B, N).

b) Prove that a nonempty subset X of a normed linear space N is bounded \Leftrightarrow f(X) is a bounded set of numbers for each f in N*.

c) Let B be a Banach space and N be a normed linear space. If $\{T_n\}$ is a sequence in B(B, N) such that $T(x) = \lim_{n \to \infty} T_n(x)$ exists for each x in B, then prove that T is a continuous linear transformation.

PART-B

5. a) If M is a proper closed linear subspace of a Hilbert space H then prove that there exists a non-zero vector \mathbf{z}_0 in H such that $\mathbf{z}_0 \perp \mathbf{M}$.

b) If M and N are closed linear subspaces of a Hilbert space H such that M \perp N then prove that the linear subspace M + N is also closed. **6**

- c) If M is a closed linear subspace of a Hilbert space H then prove that $H = M \oplus M^{\perp} \,.$
- 6. a) Let H be a Hilbert space and let f be an arbitrary functional in H*. Then prove that there exists a unique vector y in H such that $f(x) = \langle x, y \rangle$ for every x in H.

b) Show that there exists an antilinear norm preserving isometric isomorphism between a Hilbert space H and its dual H*.

c) Prove that every non zero Hilbert space contains a complete orthonormal set.

3

7. a) Prove that the set of all normal operators on a Hilbert space H forms a closed subset of B(H). 6 b) Prove that an operator T on a Hilbert space H is normal if and only if the pure and imaginary Parts of T commute each other. 6 c) Show that a unitary operator on a Hilbert space preserves both the inner product and the norm. 4 8. a) Prove each of the following for an operator T on a Hilbert space H. i) T is self adjoint $\Leftrightarrow \langle Tx, x \rangle$ is real for each vector x. ii) T is normal \Leftrightarrow || T * x || = || Tx || for each x. iii) T is unitary ⇔ T is an isometric isomorphism of H into itself. 6 b) Let P₁, P₂,..., P_n be projections on the closed linear subspaces M₁, M₂, ..., M_n of a Hilbert space H and M = $M_1 + M_2 + ... + M_n$. Then show that $P = P_1 + P_2 + \dots + P_n$ is a projection if and only if P_i 's are pairwise orthogonal and in this case P is the projection on M. 7 c) If P and Q are the projections on closed linear subspaces M and N of a

Hilbert space H, prove that PQ is a projection if and only if PQ = QP. In this

-3-

case show that PQ is the projection on M \cap N.